


Short recap

Last time we discussed

* Ditferent types of Abelian internal symmetries

* What happens if we impose these symmetries on the Lagrangian and what is the allowed spectrum

* An example of an Abelian theory: Quantum Electrodynamics (QED)



Today’s learning targets

Today you will ...

+ get familiar with different types of non-Abelian internal symmetries and how they give rise to vector

boson self-interactions

* learn what happens if we impose these symmetries on the Lagrangian and what is the allowed

spectrum

* learn about the mechanism of Spontaneous Symmetry Breaking



Non-Abelian symmetries

Noncommutative symmetries: the result of applying two symmetry transformations might depend on

the order in which they are applied

In the SM both Abelian (commutative) and non-Abelian (noncommutative) symmetries play a role

We are interested in internal symmetries where the symmetry transformation is unitary
¢p->Up, UUT=UU=1

Most relevant for the SM are U(1) (Abelian), SU(2) (non-Abelian) and SU(3) (non-Abelian)

What are the main differences between U(1) and SU(N)?



Non-Abelian symmetries
U(1) symmetry

Complex field ¢ with g # 0
¢ transforms as: ¢ — e'1%¢ (q —real number)

Transformation law is defined for each single field

separately (phase change proportional to q)

U(1) invariance of L: each term must consist of a
product of fields such that the sum of their charges is

Zero

SU(N) symmetry

Field ¢ in a representation R of dimensions M > 1

* ¢ isa vector with M components: ¢; (i = 1, ..., M)

¢ transforms as: ¢; — (eiTaGa)ijﬁbj

e« ,j=1,..,Manda=1,..,(N*-1)

* T, — generators of the SU(N) algebra (M XM matrices)

[Ta: Tb] — ifabcTc

non-Abelian symmetry transformation defined for each

multiplet of fields separately

SU(N) invariance of L: each term must consist of a
product of fields such that the various representations

are contracted into a singlet of the symmetry group



Non-Abelian symmetries

If the symmetry group is not simple, we can consider an independent rotation within each simple subgroup

Consider and SU(3)xSU(2) and a field ¢ that is a triplet under SU(3) and doublet under SU(2)

* ¢q witha = 1,2,3 is the SU(3)-triplet index and i = 1,2 is the SU(2) doublet index
Separate transformation law for SU(3) and SU(2):
bai = (e(i/Z)AaHa)a’ngﬁi, bai = (e(i/z)rbeb)ijqbaj;
Aq — eight 3x3 Gell-Mann matrices such that 4, /2 are the SU(3) generators of the triplet representation
17, — three 2x2 Pauli matrices such that 7, /2 are the SU(2) generators of the doublet representation

Notation: SU(3) xSU(2) X% symmetry (mixed Abelian and non-Abelian)

* we denote a field ¢ is a SU(3)-triplet, SU(2)-doublet and carries a U(1) charge of +1/6: ¢ (3, 2)



Non-Abelian global symmetries

The product of the various representations must be contracted into a singlet of the imposed symmetry

Example: Scalars and SO(N)
* Global SO(N) symmetry (N = 2)
* Single scalar field in the fundamental representation, ¢(N) (N scalar degrees of freedom)

* There are no fermions

The most general renormalizable £ is
1 1 1 2
L=20"¢19,0 —5m2etp — 2 A(679)
2 2 4
¢ T is the contraction of (N)XN into a singlet of SO(N) — explicitly the contraction can be written as ¢; ¢;
There is no internal symmetry which one could impose to set m* =0 or A = 0

In the case of N = 2 the symmetry is Abelian and the model is the same as the one discussed last week



Non-Abelian global symmetries

Example: Vectorial fermions and U(N)
* Global U(N) = SUN)xU(1) symmetry (N = 2)
« Two fermion fields in the fundamental representation: ¥ (N);q, Yr(N)+1 (4N degrees of freedom)

* There are no scalars
The most general renormalizable £ is
L =iy 0, + iy g — (Mg + h.c.)
We can’t write Majorana terms since the fermions are charged under U(1) (Dirac mass terms are allowed)

Since the model is vectorial, we can combine them into a Dirac fermion y and rewrite £ as

L= ilﬁyua/ﬂ/) — mlﬁlp



Non-Abelian global symmetries

Example: Chiral fermions and U(N)xU(N)
* Global UIN) XU(N)gr = SUWN) XSU(N)pxU (1), xU(1)g symmetry (N = 2)
 Two fermion field: ¥ (N, 1)1 9, 9¥(1,N)g1

* There are no scalars
The most general renormalizable £ is
L= iﬂyuaul/)L + iﬁyﬂaulpR
Fermion mass terms can be forbidden by a symmetry (unlike scalar mass terms)

The mass term vanishes because the fermion fields of the model are in a chiral representation of the symmetry



Non-Abelian local symmetries

Non-Abelian local symmetries are commonly called “Yang-Mills theories”

The following applies for both Abelian and non-Abelian local symmetries

* terms that depend on scalar and/or fermion fields, but not on their derivatives and which are invariant under a global

symmetry, are also invariant under the corresponding local symmetry

* the kinetic terms are not invariant under the local symmetry

To achieve invariance under a local non-Abelian symmetry (we will consider SU(N)) we need to add gauge fields to

replace the derivative 0#¢ with a covariant derivative D#¢ such that D#¥¢ and ¢ transform in the same way

¢ - eiTaga(x)qb’ D/i¢ - eiTaea(x)Dli¢

T,’s are the N* — 1 generators of the SU(N) algebra and, for ¢ in an M —dimensional representation they are

represented by M XM matrices

The gauge fields that we introduce must restore the local symmetry for N> — 1 independent rotations



Non-Abelian local symmetries

¢ - eiTaQa(x)qb’ Dﬂ¢ - eiTaQa(x)Dli¢
The covariant derivative is given by D# = 0* + igT,G* (g — dimensionless positive coupling constant
8 y a p plng

The transformation law for G! is given by (see question 4.6)

1
GCI;L - GCLLL _fabc‘gchM _gauga

Unlike the Abelian case the gauge boson is charged under the symmetry — self-interactions of the gauge fields

We define the field strength G, and introduce a kinetic term
_ v v _ i u
[DM:DV] — lgTaGclzt ) GCI; — a”GQL} T avGa _gfachb G;’

1
Ly = _Z Gclleauv

Kinetic term is invariant under gauge transformations but a mass term 1/2m?2G G, u 1s not



Summary: Abelian vs Non-Abelian symmetries

Abelian Non-Abelian

Field P, On)=d;, 21=1,..., n
Transformation O — 9P b, — (E'iTag")ij D,

with ¢ a real number with 7, in the irrep of @
The gauge field A, G,
irrep of the gauge field q=70 Adjoint
Covariant derivative DF = O* + igqA* DF = O* + 19T, GH
Field strength tensor Fr = orFAY — OV A* | GHY = O*GY, — OV G — g G GY
Gauge kinetic term —%FWF Hy —%Gwa Y
Gauge boson self-interactions No l Yes




Spontaneous symmetry breaking

* Spontaneously broken symmetries play an important role in physics, and particle physics in particular

* Broken symmetry? Is there a difference between a broken symmetry and having no symmetry at all?

* The idea of a broken symmetry is meaningful in two scenarios:

Explicit breaking of a symmetry by a small parameter: £ includes terms that break the symmetry, but these terms are characterized by a small

parameter (dimensionless coupling or ratio between mass scales)

Spontaneously symmetry breaking (SSB): £ is symmetric, but the vacuum state is not. Even though with SSB the symmetry is hidden, the
number of parameters is the same as in the case of unbroken symmetry. The predictive power of a spontaneously broken symmetry is as strong

as that of an unbroken symmetry



Global discrete symmetries: Z,

Model with an imposed Z, symmetry with a single scalar field ¢, odd under the symmetry

¢ —parity symmetry of £ (¢ term is forbidden)

¢ - —¢

1 2 A
L=5@"$)(0,9) =5 92 = 59"

L must be Hermitian: u? and A must be real and we must have 2 > 0

u?* can be both positive and negative but we will consider here the case u* < 0

Two possible minima of the potential:

aV

=90 +14%) =0

0¢

-+

+v
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1



Global discrete symmetries: Z,

The classical solution would be either ¢, or ¢_

¢ acquires a vacuum expectation value (VEV):

() =(0]g[0) # 0

Perturbative calculations should involve expansion around the classical minimum
The two solutions are physically equivalent: physics cannot depend on our choice

Let’s expand around ¢, and define ¢’

B=p-v = L= (04)(88) — QAP — g —

We used u? = —Av?

Compare with the most general Lagrangian
2

1
L5 =049 (0,0") — 5 ¢ =

N
24/2 b

'3
¢ 4



Global discrete symmetries: Z,

&¢'4

1 1
L=2(0"¢)(0,9") -5 A" — " — 7

Important points:

L includes all possible terms for a real scalar field and has no ¢’ parity symmetry. The symmetry is hidden and

spontaneously broken by our choice of ground state (¢) = +v

* Yet £ is not the most general renormalizable one for a scalar field. Why?



Global discrete symmetries: Z,

%qy‘l

1 1
L=2(0"¢)(0,9") -5 A" — " — 7

Important points:

L includes all possible terms for a real scalar field and has no ¢’ parity symmetry. The symmetry is hidden and

spontaneously broken by our choice of ground state (¢) = +v
* Yet £ is not the most general renormalizable one for a scalar field: depends only on two parameter and not three
* 7% = 4Am? — clue that the symmetry is spontaneously rather than explicitly broken!
* We can choose any two parameters to describe the system: SSB does not introduce new parameters!
» SS5B changes dimensionful parameters but not dimensionless ones

 The model describes a particle with a scalar particle of mass 2Av? = —2u? (excitation of the ¢’ field)



Global Abelian continuous symmetries: U(1)

* Model with an imposed U(1) symmetry and a single scalar field ¢ with g = +1
.9 2
¢ e L=(0"¢")(0u0) —1?dTd - A(d7)

* Equivalently we can impose an SO(2) symmtery
¢R>—>O<¢R>, O—< coiSQ sin@)
Or Or —sinf cosf
1 1 ‘uz 2 2 A 2 22
£ = (0,08) @) + (9u1) (04 b)) — - (93 + &) — 7 (0% + 7)

« u? and A must be real and we must have 2 > 0 and. We consider u? < 0 and define v = —u?/2

UZZ U
r=a(st6-2) = aete)=(hroth=vi=-L

* Circle of radius v in the (¢, ¢;) that corresponds to the minimum of the potential



Global Abelian continuous symmetries: U(1)

* We have to choose a specific vacuum to expand around, and we choose only the real component of ¢ to carry VEV

(Pr) =, (p;) =0

* We define the real scalar fields with vanishing VEVs

h=¢r—v, $ = ¢ (h) =()=0

.

L= % (9,h)(0"R) + % (0,€)(0%&) — Av2h? — Avh(h? + &2) — %(h2 +&%)?



Global Abelian continuous symmetries: U(1)

L= % (9,h)(0"h) + % (0,8)(0%&) — Av?h? — Avh(h* + &2) — %(h2 +&2)?

Important points:

* Spontaneously broken SO(2) symmetry: presence of the h(h* + &%) term
L describes one massive scalar, h, with m? = 2Av? and one massless boson &

* If the symmetry was not broken, we wouldn’t be able to distinguish the two components of the complex scalar field,

which after SSB have different masses
* Only two independent parameters as for a £ with an unbroken SO (2)
* Quartic terms, with dimensionless couplings, are the same as before SSB (only dimensionful couplings are modified)

 Arbitrary choice to assign the VEV to the real component of ¢ (physics doesn’t depend on this choice)

« We write VEV as (¢g) = v or equivalently (¢} = v/+2 (factor v2 when we move between real and complex fields)



Global Abelian continuous symmetries: U(1)

v2\*
V=/1<¢T¢—7>

L= %(aﬂh)(aﬂh) + % (0,8)(0%&) — Av2h? — Avh(h? + &2) — % (h* +&%)?

Interesting features of our model:

» Existence of a massless scalar field ¢

* Not specific to our model, but rather the result of a general theorem called Goldstone’s theorem:

* SSB of a global continuous symmetry is accompanied by massless scalars
¢ The number of the massless scalars and their quantum numbers equal those of the broken generators

¢ The massless scalars are called Nambu-Goldstone Bosons
» SSB is possible only if the vacuum is degenerate (for continuous symmetry it is also continuous)

* In one direction the potential is flat corresponding to a massless DoF

21



Fermion masses

SSB can give masses to chiral fermions

Let’s consider U(1) symmetry with a left-handed fermion 1, a right-handed fermion 1z, and a complex scalar ¢

q) =+1, q@gr) =42,  q(p) = +1
2 _
L= Lyin — 12¢Tp — 2(¢pT¢)" — Ypyrp, + h.c.)
We take u? < 0 so we get the potential from slide 18, leading to a VEV for ¢: [{¢)| = v/ V2 # 0 and we choose

(Pr) = v, () =0

We define the real fields h and ¢ such that they have vanishing VEV

_h+v+i§
V2




Fermion masses

We define the real fields h and ¢ such that they have vanishing VEV
h+v+ié

2

Expanding around the chosen vacuum we find
Yv__ Y —
L= Ln =V — (o rthy + = (h +i +hec )

kin ( 5) \/i lpRl/)L \/? ( f)l/)Rl/)L

Y; and Yx combine to form a Dirac fermion with mass

Yv
mlp:ﬁ

Possible because the symmetry under which the fermion is chiral is broken!
In the more general case, the symmetry might only be partially broken (only a subgroup of the original group)

In this case the conditions for generating fermion masses are
* Dirac mass: fermion representation is vector-like under the unbroken subgroup

* Majorana mass: fermion is neutral under unbroken U(1) groups + in real representation of unbroken non-Abelian subgroups



Local symmetries: the Higgs mechanism

Let’s consider SSB of a local U(1) symmetry and a single complex scalar field

1

¢ - 0@ L= (D*§) (Du9) = FuF™ — 120" — 2(79)"

Covariant derivative is defined by
D¥¢ = (0% + igA¥)¢
We consider the case of u* < 0, leading to SSB via a VEV of ¢

@) == =t
-2 - &

We again choose the real component of ¢ to carry the VEV

We write the complex scalar in terms of the two real scalar fields with vanishing VEVs, (h) = (£)

v+ h(x)
V2

¢(x) — eif(x)/v

0



Local symmetries: the Higgs mechanism

The symmetry is spontaneously broken and we write £ in terms of the VEV-less fields h and ¢

L no longer invariant under the broken symmetry transformation. The transformation constitutes a change of basis

We can choose a basis by choosing a specific gauge: 8(x) = —&(x)/v (unitary gauge)
h+v
V2

1
- ¢ = Ay = Vo= Ayt 08

¢’ has one DoF and V}, has three
2,2 2 sz g2

gcv . ) . 3 A
— - 2 —_
> /A4 > h* + > V,.VEh(2v + h) — Avh 4h

1,1 .
L=—7VnV +§(aﬁh)(a h) +

The kinetic term of the gauge boson is independent of the gauge fixing

a, v, —o,V, = d,A, — 0,4,



Local symmetries: the Higgs mechanism

2,2

g°v
2

2Av? 2 A
- h? + %VMV“h(Zv +h) = wh — Tkt

1 1
L=—=V, VK +§(aﬂh)(a“h) +

2 v VMVM_

Important points:

» the model consists of a massive vector boson of mass m{ = (gv)? and a massive scalar of mass-square mj = 2Av?
* the sign of the mass-squared term is opposite for a vector boson and a scalar

* hscalar is called “a Higgs boson” and the related field, which acquires a VEV (¢) is called the Higgs field

* the source of the mass-squared term for the vector bosons is the kinetic term of the Higgs field

* the propagator of a massive gauge boson depends on the gauge choice

* the ¢ field is “eaten” to give mass to the gauge boson: convenient choice to make the phase to be the “eaten” DoF

* in the limit g —» 0 we have m; — 0: massless gauge boson and a massless scalar



Local symmetries: the Higgs mechanism

2,2 2 2
gev p 2AvV , 9 . 3 A A
— = 2 — —
> V.V > hs + > V,V¥h(2v + h) — Avh 4h

1 [7a% 1 U
L=—ZVWV +§(a“h)(a h) +

Interactions:

hVV coupling is proportional to the mass-squared of the vector boson

the dimensionless VVhh and hhhh couplings are unchanged from the symmetric Lagrangian

the unbroken £ (slide 24) depends on three parameters, which can be taken to be g, v, and A

L after SSB has two mass terms and four interaction terms which depend on the same three parameters



The Higgs mechanism summary

Type Consequences

Spacetime Conservation of energy, momentum, angular momentum
Discrete Selection rules

Global (exact) Conserved charges

Global (spon. broken) Massless scalars
Local (exact) Interactions, massless spin-1 mediators

Local (spon. broken)  Interactions, massive spin-1 mediators

SSB gives masses to the gauge bosons related to the broken generators

Gauge bosons of an unbroken symmetry remain massless: their masslessness is protected by a symmetry
The field that acquires a VEV must be a scalar field (otherwise its VEV would break Lorentz invariance)
SSB of a symmetry can give masses also to fermions via Yukawa interactions

States with different QNs under the broken symmetry but the same QNs under the unbroken subgroup can mix!
28



Summary of Lecture 3

Main learning outcomes

» Examples and characteristics of non-Abelian symmetries (global and local) and how they give rise to

vector boson self-interactions

* Mechanism of spontaneous symmetry breaking, generating masses of scalar, vector, and fermions fields



