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Short recap 

Last time we discussed

• Different types of Abelian internal symmetries

• What happens if we impose these symmetries on the Lagrangian and what is the allowed spectrum

• An example of an Abelian theory: Quantum Electrodynamics (QED)
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Today’s learning targets

Today you will …

• get familiar with different types of non-Abelian internal symmetries and how they give rise to vector 

boson self-interactions

• learn what happens if we impose these symmetries on the Lagrangian and what is the allowed 

spectrum

• learn about the mechanism of Spontaneous Symmetry Breaking
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Non-Abelian symmetries

• Noncommutative symmetries: the result of applying two symmetry transformations might depend on 

the order in which they are applied

• In the SM both Abelian (commutative) and non-Abelian (noncommutative) symmetries play a role

• We are interested in internal symmetries where the symmetry transformation is unitary

• Most relevant for the SM are 𝑈 1  (Abelian), 𝑆𝑈 2  (non-Abelian) and 𝑆𝑈 3  (non-Abelian)

• What are the main differences between 𝑈 1  and 𝑆𝑈 𝑁 ? 

4

𝜙 → 𝑈𝜙, 	𝑈𝑈! = 𝑈!𝑈 = 𝟏



• Field 𝜙 in a representation 𝑅 of dimensions 𝑀 > 1

• 𝜙	is a vector with 𝑀	components: 𝜙!	(𝑖 = 1,… ,𝑀)

• 𝜙 transforms as: 𝜙! → 𝑒!"!#! !$𝜙$ 

• 𝑖, 𝑗 = 1,… ,𝑀 and 𝑎 = 1,… , (𝑁" − 1)

• 𝑇# − generators of the 𝑆𝑈 𝑁  algebra (𝑀×𝑀	matrices)

• non-Abelian symmetry transformation defined for each 

multiplet of fields separately

• 𝑆𝑈 𝑁  invariance of ℒ: each term must consist of a 

product of fields such that the various representations 

are contracted into a singlet of the symmetry group

Non-Abelian symmetries

• Complex field 𝜙 with 𝑞 ≠ 0

• 𝜙 transforms as: 𝜙 → 𝑒!%#𝜙 (𝑞 −real number)

• Transformation law is defined for each single field 

separately (phase change proportional to 𝑞)

• 𝑈 1  invariance of ℒ: each term must consist of a 

product of fields such that the sum of their charges is 

zero
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𝑇3, 𝑇4 = 𝑖𝑓345𝑇5

𝑼 𝟏 	symmetry 𝑺𝑼 𝑵 	symmetry



• If the symmetry group is not simple, we can consider an independent rotation within each simple subgroup

• Consider and 𝑆𝑈 3 ×𝑆𝑈 2  and a field 𝜙 that is a triplet under 𝑆𝑈 3  and doublet under 𝑆𝑈 2

• 𝜙$! with 𝛼 = 1, 2, 3 is the 𝑆𝑈 3 -triplet index and 𝑖 = 1, 2 is the 𝑆𝑈 2  doublet index

• Separate transformation law for 𝑆𝑈 3  and 𝑆𝑈 2 : 

• 𝜆& − eight 3×3 Gell-Mann matrices such that 𝜆&/2 are the 𝑆𝑈 3  generators of the triplet representation

• 𝜏' − three 2×2 Pauli matrices such that 𝜏'/2 are the 𝑆𝑈 2  generators of the doublet representation

• Notation: 𝑆𝑈 3  ×𝑆𝑈 2 ×𝑈 1  symmetry (mixed Abelian and non-Abelian)

• we denote a field 𝜙 is a 𝑆𝑈 3 -triplet, 𝑆𝑈 2 -doublet and carries a 𝑈 1  charge of +1/6: 𝜙 3, 2 %&/(

Non-Abelian symmetries

6

𝜙(! → 𝑒 !/* +!#!
(,𝜙,! , 𝜙(! → 𝑒 !/* -"#"

!$𝜙($ ,	



• The product of the various representations must be contracted into a singlet of the imposed symmetry

• Example: Scalars and 𝑆𝑂 𝑁

• Global 𝑆𝑂 𝑁  symmetry (𝑁 ≥ 2)

• Single scalar field in the fundamental representation, 𝜙 𝑁  (𝑁 scalar degrees of freedom)

• There are no fermions

• The most general renormalizable ℒ is

• 𝜙.𝜙 is the contraction of ;𝑁 ×𝑁 into a singlet of 𝑆𝑂 𝑁 − explicitly the contraction can be written as 𝜙!∗𝜙!

• There is no internal symmetry which one could impose to set 𝑚* = 0 or 𝜆 = 0

• In the case of 𝑁 = 2 the symmetry is Abelian and the model is the same as the one discussed last week

Non-Abelian global symmetries
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ℒ =
1
2𝜕

;𝜙<𝜕;𝜙 −
1
2𝑚

=𝜙<𝜙 −
1
4𝜆 𝜙

<𝜙 =



• Example: Vectorial fermions and 𝑈 𝑁

• Global 𝑈 𝑁 = 𝑆𝑈 𝑁 ×𝑈 1  symmetry (𝑁 ≥ 2)

• Two fermion fields in the fundamental representation: 𝜓) 𝑁 %&, 𝜓* 𝑁 %& (4𝑁 degrees of freedom)

• There are no scalars

• The most general renormalizable ℒ is

• We can’t write Majorana terms since the fermions are charged under 𝑈 1  (Dirac mass terms are allowed)

• Since the model is vectorial, we can combine them into a Dirac fermion 𝜓 and rewrite ℒ as

Non-Abelian global symmetries
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ℒ = 𝑖𝜓?𝛾@𝜕@𝜓? + 𝑖𝜓A𝛾@𝜕@𝜓A − 𝑚𝜓?𝜓@ + h. c.	

ℒ = 𝑖 2𝜓𝛾@𝜕@𝜓 −𝑚2𝜓𝜓



• Example: Chiral fermions and 𝑈 𝑁 ×𝑈 𝑁

• Global 𝑈 𝑁 )×𝑈 𝑁 * = 𝑆𝑈 𝑁 )×𝑆𝑈 𝑁 *×𝑈 1 )×𝑈 1 * symmetry (𝑁 ≥ 2)

• Two fermion field: 𝜓) 𝑁, 1 &,,, 𝜓* 1,𝑁 ,,&

• There are no scalars

• The most general renormalizable ℒ is

• Fermion mass terms can be forbidden by a symmetry (unlike scalar mass terms)

• The mass term vanishes because the fermion fields of the model are in a chiral representation of the symmetry

Non-Abelian global symmetries
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ℒ = 𝑖𝜓?𝛾@𝜕@𝜓? + 𝑖𝜓A𝛾@𝜕@𝜓A



• Non-Abelian local symmetries are commonly called “Yang-Mills theories” 

• The following applies for both Abelian and non-Abelian local symmetries

• terms that depend on scalar and/or fermion fields, but not on their derivatives and which are invariant under a global 

symmetry, are also invariant under the corresponding local symmetry

• the kinetic terms are not invariant under the local symmetry

• To achieve invariance under a local non-Abelian symmetry (we will consider 𝑆𝑈 𝑁 ) we need to add gauge fields to 

replace the derivative 𝜕0𝜙 with a covariant derivative 𝐷0𝜙 such that 𝐷0𝜙 and 𝜙 transform in the same way

• 𝑇&’s are the 𝑁* − 1 generators of the 𝑆𝑈 𝑁  algebra and, for 𝜙 in an 𝑀 −dimensional representation they are 

represented by 𝑀×𝑀 matrices

• The gauge fields that we introduce must restore the local symmetry for 𝑁* − 1 independent rotations 

Non-Abelian local symmetries
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𝜙 → 𝑒AB1C1 D 𝜙, 	 𝐷;𝜙 → 𝑒AB1C1 D 𝐷;𝜙



• The covariant derivative is given by 𝐷0 = 𝜕0 + 𝑖𝑔𝑇&𝐺&
0 	(𝑔 − dimensionless positive coupling constant)

• The transformation law for 𝐺&
0 is given by (see question 4.6)

• Unlike the Abelian case the gauge boson is charged under the symmetry → self-interactions of the gauge fields 

• We define the field strength 𝐺&
02 and introduce a kinetic term

• Kinetic term is invariant under gauge transformations but a mass term 1/2𝑚*𝐺&
0𝐺&0 is not

Non-Abelian local symmetries
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𝜙 → 𝑒AB1C1 D 𝜙, 	 𝐷;𝜙 → 𝑒AB1C1 D 𝐷;𝜙

𝐺3
; → 𝐺3

; − 𝑓345𝜃4𝐺5
; −

1
𝑔
𝜕;𝜃3

ℒE = −
1
4
𝐺3
;F𝐺3;F	

𝐷; , 𝐷F = 𝑖𝑔𝑇3𝐺3
;F , 	 𝐺3

;F = 𝜕;𝐺3F − 𝜕F𝐺3
; − 𝑔𝑓345𝐺4

;𝐺5F



Summary: Abelian vs Non-Abelian symmetries
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• Spontaneously broken symmetries play an important role in physics, and particle physics in particular

• Broken symmetry? Is there a difference between a broken symmetry and having no symmetry at all?

• The idea of a broken symmetry is meaningful in two scenarios:

• Explicit breaking of a symmetry by a small parameter: ℒ includes terms that break the symmetry, but these terms are characterized by a small 

parameter (dimensionless coupling or ratio between mass scales)

• Spontaneously symmetry breaking (SSB): ℒ is symmetric, but the vacuum state is not. Even though with SSB the symmetry is hidden, the 

number of parameters is the same as in the case of unbroken symmetry. The predictive power of a spontaneously broken symmetry is as strong 

as that of an unbroken symmetry

Spontaneous symmetry breaking
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• Model with an imposed 𝑍* symmetry with a single scalar field 𝜙, odd under the symmetry

• 𝜙 −parity symmetry of ℒ (𝜙3 term is forbidden)

• ℒ must be Hermitian: 𝜇* and 𝜆 must be real and we must have 𝜆 > 0

• 𝜇* can be both positive and negative but we will consider here the case 𝜇* < 0

• Two possible minima of the potential:

Global discrete symmetries: 𝒁𝟐
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ℒ =
1
2
𝜕;𝜙 𝜕;𝜙 −

𝜇=

2
𝜙= −

𝜆
4
𝜙G

𝜙 → −𝜙

𝜕𝑉
𝜕𝜙 = 𝜙 𝜇= + 𝜆𝜙= = 0

𝜙± = ± −
𝜇=

𝜆 ≡ ±𝑣



• The classical solution would be either 𝜙4 or 𝜙5

• 𝜙 acquires a vacuum expectation value (VEV):

• Perturbative calculations should involve expansion around the classical minimum

• The two solutions are physically equivalent: physics cannot depend on our choice

• Let’s expand around 𝜙4 and define 𝜙6

• We used 𝜇* = −𝜆𝑣*

• Compare with the most general Lagrangian

Global discrete symmetries: 𝒁𝟐

15

𝜙 ≡ 0 𝜙 0 ≠ 0

𝜙I = 𝜙 − 𝑣	 ⟹ 	 ℒ =
1
2 𝜕;𝜙I 𝜕;𝜙I −

1
2 2𝜆𝑣= 𝜙I= − 𝜆𝑣𝜙IJ −

𝜆
4𝜙

IG

ℒK =
1
2 𝜕;𝜙I 𝜕;𝜙I −

𝑚=

2 𝜙I= −
𝜂
2 2

𝜙IJ −
𝜆
4𝜙

IG



Important points:

• ℒ includes all possible terms for a real scalar field and has no 𝜙6 parity symmetry. The symmetry is hidden and 

spontaneously broken by our choice of ground state 𝜙 = +𝑣

• Yet ℒ is not the most general renormalizable one for a scalar field. Why?

Global discrete symmetries: 𝒁𝟐
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ℒ =
1
2 𝜕;𝜙I 𝜕;𝜙I −

1
2 2𝜆𝑣= 𝜙I= − 𝜆𝑣𝜙IJ −

𝜆
4𝜙

IG



Important points:

• ℒ includes all possible terms for a real scalar field and has no 𝜙6 parity symmetry. The symmetry is hidden and 

spontaneously broken by our choice of ground state 𝜙 = +𝑣

• Yet ℒ is not the most general renormalizable one for a scalar field: depends only on two parameter and not three

• 𝜂* = 4𝜆𝑚* − clue that the symmetry is spontaneously rather than explicitly broken!

• We can choose any two parameters to describe the system: SSB does not introduce new parameters!

• SSB changes dimensionful parameters but not dimensionless ones

• The model describes a particle with a scalar particle of mass 2𝜆𝑣* = −2𝜇* (excitation of the 𝜙6 field)

Global discrete symmetries: 𝒁𝟐
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ℒ =
1
2 𝜕;𝜙I 𝜕;𝜙I −

1
2 2𝜆𝑣= 𝜙I= − 𝜆𝑣𝜙IJ −

𝜆
4𝜙

IG



• Model with an imposed 𝑈 1  symmetry and a single scalar field 𝜙 with 𝑞 = +1

• Equivalently we can impose an 𝑆𝑂 2  symmtery

•  𝜇* and 𝜆 must be real and we must have 𝜆 > 0 and. We consider 𝜇* < 0 and define 𝑣* = −𝜇*/𝜆

• Circle of radius 𝑣 in the 𝜙7 , 𝜙8  that corresponds to the minimum of the potential

Global Abelian continuous symmetries: 𝑼 𝟏
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𝑉 = 𝜆 𝜙<𝜙 −
𝑣=

2

=

	 ⟹ 	 2 𝜙<𝜙 = 𝜙@= + 𝜙L= = 𝑣= = −
𝜇=

𝜆

ℒ = 𝜕;𝜙< 𝜕;𝜙 − 𝜇=𝜙<𝜙 − 𝜆 𝜙<𝜙 =𝜙 → 𝑒AC𝜙

ℒ =
1
2 𝜕;𝜙@ 𝜕;𝜙@ +

1
2 𝜕;𝜙L 𝜕;𝜙L −

𝜇=

2 𝜙@= + 𝜙L= −
𝜆
4 𝜙@= + 𝜙L= =



• We have to choose a specific vacuum to expand around, and we choose only the real component of 𝜙 to carry VEV

• We define the real scalar fields with vanishing VEVs

Global Abelian continuous symmetries: 𝑼 𝟏
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𝜙@ = 𝑣, 𝜙L = 0

ℒ =
1
2 𝜕;ℎ 𝜕;ℎ +

1
2 𝜕;𝜉 𝜕;𝜉 − 𝜆𝑣=ℎ= − 𝜆𝑣ℎ ℎ= + 𝜉= −

𝜆
4 ℎ= + 𝜉= =

ℎ = 𝜙@ − 𝑣, 	𝜉 = 𝜙L , ℎ = 𝜉 = 0



Important points:

• Spontaneously broken 𝑆𝑂 2  symmetry: presence of the ℎ ℎ* + 𝜉*  term 

• ℒ describes one massive scalar, ℎ, with 𝑚* = 2𝜆𝑣* and one massless boson 𝜉

• If the symmetry was not broken, we wouldn’t be able to distinguish the two components of the complex scalar field, 

which after SSB have different masses

• Only two independent parameters as for a ℒ with an unbroken 𝑆𝑂 2

• Quartic terms, with dimensionless couplings, are the same as before SSB (only dimensionful couplings are modified)

• Arbitrary choice to assign the VEV to the real component of 𝜙 (physics doesn’t depend on this choice)

• We write VEV as 𝜙7 = 𝑣 or equivalently 𝜙 = 𝑣/ 2 (factor 2	when we move between real and complex fields)

Global Abelian continuous symmetries: 𝑼 𝟏
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ℒ =
1
2 𝜕;ℎ 𝜕;ℎ +

1
2 𝜕;𝜉 𝜕;𝜉 − 𝜆𝑣=ℎ= − 𝜆𝑣ℎ ℎ= + 𝜉= −

𝜆
4 ℎ= + 𝜉= =



Interesting features of our model:

• Existence of a massless scalar field 𝜉

• Not specific to our model, but rather the result of a general theorem called Goldstone’s theorem: 

• SSB of a global continuous symmetry is accompanied by massless scalars

• The number of the massless scalars and their quantum numbers equal those of the broken generators

• The massless scalars are called Nambu-Goldstone Bosons

• SSB is possible only if the vacuum is degenerate (for continuous symmetry it is also continuous)

• In one direction the potential is flat corresponding to a massless DoF

Global Abelian continuous symmetries: 𝑼 𝟏
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ℒ =
1
2 𝜕!ℎ 𝜕!ℎ +

1
2 𝜕!𝜉 𝜕!𝜉 − 𝜆𝑣"ℎ" − 𝜆𝑣ℎ ℎ" + 𝜉" −

𝜆
4 ℎ" + 𝜉" "

𝑉 = 𝜆 𝜙.𝜙 −
𝑣*

2

*



• SSB can give masses to chiral fermions

• Let’s consider 𝑈 1  symmetry with a left-handed fermion 𝜓9, a right-handed fermion 𝜓7, and a complex scalar 𝜙

• We take 𝜇* < 0 so we get the potential from slide 18, leading to a VEV for 𝜙: 𝜙 = 𝑣/ 2 ≠ 0 and we choose

• We define the real fields ℎ and 𝜉 such that they have vanishing VEV

Fermion masses
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𝑞 𝜓M = +1, 	𝑞 𝜓@ = +2, 	𝑞 𝜙 = +1	

ℒ = ℒNOP − 𝜇=𝜙<𝜙 − 𝜆 𝜙<𝜙
= − 𝑌𝜙𝜓@𝜓M + h. c.	

𝜙@ = 𝑣, 𝜙L = 0

𝜙 =
ℎ + 𝑣 + 𝑖𝜉

2



• We define the real fields ℎ and 𝜉 such that they have vanishing VEV

• Expanding around the chosen vacuum we find

• 𝜓9 and 𝜓7 combine to form a Dirac fermion with mass 

• Possible because the symmetry under which the fermion is chiral is broken!

• In the more general case, the symmetry might only be partially broken (only a subgroup of the original group)

• In this case the conditions for generating fermion masses are

• Dirac mass: fermion representation is vector-like under the unbroken subgroup

• Majorana mass: fermion is neutral under unbroken 𝑈 1  groups + in real representation of unbroken non-Abelian subgroups

Fermion masses
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ℒ = ℒNOP − 𝑉 ℎ, 𝜉 −
𝑌𝑣
2
𝜓@𝜓M +

𝑌
2
ℎ + 𝑖𝜉 𝜓@𝜓M + h. c.	

𝜙 =
ℎ + 𝑣 + 𝑖𝜉

2

𝑚Q =
𝑌𝑣
2



• Let’s consider SSB of a local 𝑈 1  symmetry and a single complex scalar field

• Covariant derivative is defined by

• We consider the case of 𝜇* < 0, leading to SSB via a VEV of 𝜙

• We again choose the real component of 𝜙 to carry the VEV

• We write the complex scalar in terms of the two real scalar fields with vanishing VEVs, ℎ = 𝜉 = 0

Local symmetries: the Higgs mechanism
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𝜙 𝑥 = 𝑒AR(D)/T
𝑣 + ℎ(𝑥)

2

ℒ = 𝐷;𝜙 < 𝐷;𝜙 −
1
4𝐹;F𝐹

;F − 𝜇=𝜙<𝜙 − 𝜆 𝜙<𝜙 =𝜙 → 𝑒AC(D)𝜙

𝐷;𝜙 = 𝜕; + 𝑖𝑔𝐴; 𝜙

𝜙 =
𝑣
2
, 	 𝑣= = −

𝜇=

𝜆



• The symmetry is spontaneously broken and we write ℒ in terms of the VEV-less fields ℎ and 𝜉

• ℒ no longer invariant under the broken symmetry transformation. The transformation constitutes a change of basis

• We can choose a basis by choosing a specific gauge: 𝜃 𝑥 = −𝜉 𝑥 /𝑣 (unitary gauge)

• 𝜙6 has one DoF and 𝑉0 has three

• The kinetic term of the gauge boson is independent of the gauge fixing

Local symmetries: the Higgs mechanism
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ℒ = −
1
4
𝑉;F𝑉;F +

1
2
𝜕;ℎ 𝜕;ℎ +

𝑔=𝑣=

2
𝑉;𝑉; −

2𝜆𝑣=

2
ℎ= +

𝑔=

2
𝑉;𝑉;ℎ 2𝑣 + ℎ − 𝜆𝑣ℎJ −

𝜆
4
ℎG

𝜙 → 𝜙I =
ℎ + 𝑣
2
, 	 𝐴; → 𝑉; = 𝐴; +

1
𝑔𝑣

𝜕;𝜉

𝜕;𝑉F − 𝜕F𝑉; = 𝜕;𝐴F − 𝜕F𝐴;



Important points:

• the model consists of a massive vector boson of mass 𝑚:
* = 𝑔𝑣 * and a massive scalar of mass-square 𝑚;

* = 2𝜆𝑣*

• the sign of the mass-squared term is opposite for a vector boson and a scalar

• ℎ scalar is called “a Higgs boson” and the related field, which acquires a VEV 𝜙  is called the Higgs field 

• the source of the mass-squared term for the vector bosons is the kinetic term of the Higgs field

• the propagator of a massive gauge boson depends on the gauge choice

• the 𝜉 field is “eaten” to give mass to the gauge boson: convenient choice to make the phase to be the “eaten” DoF

• in the limit 𝑔 → 0 we have 𝑚: → 0: massless gauge boson and a massless scalar

Local symmetries: the Higgs mechanism
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ℒ = −
1
4
𝑉;F𝑉;F +

1
2
𝜕;ℎ 𝜕;ℎ +

𝑔=𝑣=

2
𝑉;𝑉; −

2𝜆𝑣=

2
ℎ= +

𝑔=

2
𝑉;𝑉;ℎ 2𝑣 + ℎ − 𝜆𝑣ℎJ −

𝜆
4
ℎG



Interactions:

• ℎ𝑉𝑉 coupling is proportional to the mass-squared of the vector boson

• the dimensionless 𝑉𝑉ℎℎ and ℎℎℎℎ couplings are unchanged from the symmetric Lagrangian

• the unbroken ℒ (slide 24) depends on three parameters, which can be taken to be 𝑔, 𝑣, and 𝜆

• ℒ after SSB has two mass terms and four interaction terms which depend on the same three parameters

Local symmetries: the Higgs mechanism
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ℒ = −
1
4
𝑉;F𝑉;F +

1
2
𝜕;ℎ 𝜕;ℎ +

𝑔=𝑣=

2
𝑉;𝑉; −

2𝜆𝑣=

2
ℎ= +

𝑔=

2
𝑉;𝑉;ℎ 2𝑣 + ℎ − 𝜆𝑣ℎJ −

𝜆
4
ℎG



• SSB gives masses to the gauge bosons related to the broken generators

• Gauge bosons of an unbroken symmetry remain massless: their masslessness is protected by a symmetry

• The field that acquires a VEV must be a scalar field (otherwise its VEV would break Lorentz invariance)

• SSB of a symmetry can give masses also to fermions via Yukawa interactions

• States with different QNs under the broken symmetry but the same QNs under the unbroken subgroup can mix!

The Higgs mechanism summary
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Summary of Lecture 3

Main learning outcomes

• Examples and characteristics of non-Abelian symmetries (global and local) and how they give rise to 

vector boson self-interactions 

• Mechanism of spontaneous symmetry breaking, generating masses of scalar, vector, and fermions fields
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